Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line
نویسندگان
چکیده
Herein we investigated the molecular mechanism of action of the citrus flavonoid, quercetin in skeletal muscle cells (L6 myotubes). Taking advantage of protein kinase inhibitors, we proved that the effect of quercetin on 2-NBDG uptake in L6 myotubes was not through insulin signaling pathway, but through adenosine monophosphate kinase (AMPK) pathway and its downstream target p38 MAPK. An increase in the cellular AMP to ATP ratio on pretreatment may account for AMPK activation which was coupled with a transient change in mitochondrial membrane potential. In addition, quercetin triggered a rise in intracellular calcium suggesting that calcium-calmodulin mediated protein kinase (CaMKK) may also be involved. Quercetin shared a similar mechanism with the well-known drug metformin, highlighting it as a promising compound for the management of type 2 diabetes. The AMPK signaling pathway could contribute to correction of insulin resistance through bypassing the insulin-regulated system for GLUT4 translocation.
منابع مشابه
Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling
We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes ...
متن کاملExercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles.
Muscle contraction and insulin induce glucose uptake in skeletal muscle through GLUT4 membrane translocation. Beneficial effects of exercise on glucose homeostasis in insulin-resistant individuals are known to be due to their distinct mechanism between contraction and insulin action on glucose uptake in skeletal muscle. However, the underlying mechanisms are not clear. Here we show that in skel...
متن کاملAnti-diabetic phytochemicals that promote GLUT4 translocation via AMPK signaling in muscle cells
Skeletal muscles are the largest tissue in our body and play an important role in maintaining glucose homeostasis. Cultured L6 myotubes and C2C12 myotubes are useful to construct simple glucose uptake assay systems, to screen various phytochemicals that promote glucose uptake, and to clarify their modes of actions. In skeletal muscles, insulin promotes glucose uptake by activating phosphatidyli...
متن کاملبررسی اثر کورکومین بر میزان فسفریلاسیون AMPK وACC در سلولهای ماهیچهای رده C2C12
Introduction: AMP activated protein kinase (AMPK) as key regulators of cell metabolism, plays a major role in the activation of catabolic pathways, such as glucose transport and fatty acid oxidation. Thus, activation of this pathway can be used in the treatment of diabetes and metabolic syndrome. Many studied proposed the effectiveness of the polyphenols present in rhizomes of turmeric (curcumi...
متن کاملRosmarinic Acid, a Rosemary Extract Polyphenol, Increases Skeletal Muscle Cell Glucose Uptake and Activates AMPK.
Skeletal muscle is a major insulin-target tissue and plays an important role in glucose homeostasis. Impaired insulin action in muscles leads to insulin resistance and type 2 diabetes mellitus. 5' AMP-activated kinase (AMPK) is an energy sensor, its activation increases glucose uptake in skeletal muscle and AMPK activators have been viewed as a targeted approach in combating insulin resistance....
متن کامل